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The transmission of sound through a turbulent shear layer is reviewed both with 
respect to  the mathematical theory of the distortion of signals during propagation 
and also as the basis of the analysis in part 2 of the spectral broadening evinced by 
experimental results relevant t o  the study of aircraft noise. The reflexion and trans- 
mission coefficients, which involve both amplitude and phase changes, are obtained for 
scabtering by an irregular and unsteady interface convected between two media; 
diffraction of high frequency sound by small-scale turbulence in a shear layer is 
accounted for by means of a phase shift and conservation laws for energy, wavenumber 
and amplitude. These results may be used to  construct the sound field transmitted 
through a turbulent shear layer from a source in the interior of a jet; multiple internal 
reflexions are accounted for in the case o/E.transmission through two parallel shear 
layers, i.e. a jet of finite width shieldid a noise source. A statistical description is 
given of the process of attenuation of the transmitted wave as energy is diffracted 
by the turbulence, and of the partial compensation by interference between correlated 
components of the refracted wave; the reference case is a monochromatic point source, 
which, when placed behind a system of shear layers, has its energy redistributed 
directionally and spread over a range of frequencies. The expressions obtained for 
the energy flux include as particular cases the results of Howe for the plane ( 1  975) and 
impedance (1  976) layers, the effects of turbulence being shown to be consistent with 
the experiments of Schmidt & Tilmann (1  970) and Ho & Kovasznay (1976a, b ) .  

1. Introduction 
The purpose of this paper is t o  review certain aspects of the mathematical theory of 

the propagation of waves (signals with information content) through a non-uniform 
medium. Gradual or sharp changes in the properties of the latter, either dynamical 
or constitutive, distort the original signal and cause coherent energy to  be transformed 
into ‘noise’. We shall be concerned specifically with the redistribution in direction 
and frequency of sound transmitted through turbulent shear layers. 

1 .1 .  Scattering and diffraction of waves 

The scattering of waves by various bodies with regular shapes has been studied since 
bhe work of D’Alembert (1747) by solving the wave equation, together with the 
appropriate boundary conditions, in suitable co-ordinate systems. The radiation con- 
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dition was introduced by Sommerfeld (1896), whose results for diffraction by a semi- 
infinite sheet have led to  a few extensions, e.g. to  the thick plate (Jones 1953), by 
various methods (Crighton & Leppington 1973). Gradual changes in the properties 
of the wave-bearing medium are described by space or time variations in the co- 
efficients of the appropriate wave equation and some exacti solutions have been 
obtained for propagation in a stratified medium (Brekovskikh 1960). The simplest 
problem is a plane interface, which gives rise to  reflected and transmitted plane waves 
for each incident plane-wave component, e.g. of a spherical wave front forming a 
lateral wave (Landau & Lifshitz 1959, 0 72). 

In general, physical problems involving arbitrary variations in the medium have 
been analysed successfully only when the wavelength is not of the same order as the 
length scale of the inhomogeneities. This corresponds t o  two limiting cases: a t  low 
frequencies the properties of the medium change abruptly on the scale of a wavelength, 
and non-uniformities appear as an interface, generally of irregular or unsteady shape, 
scattering the waves; a t  high frequencies, e.g. in the diffraction of sound by non- 
uniform flow (Blokhintsev 1956), the geometrical approximation of propagation along 
rays can be applied. I n  certain refraction problems scattering and diffraction are both 
involved, a case of practical interest being a shear layer, which may be modelled as an 
irregular unsteady interface entraining a region of anisotropic and possibly non- 
stationary, turbulence. 

I n  practical situations the non-uniformities occur randomly; for example, irre- 
gularities of an ocean surface return clutter with a sonar echo (Clarke 1973), atmospheric 
turbulence produces fluctuations in the reception of radio signals (Tatarski 1967) and 
impurities in the glass limit the resolving power of lenses (Chernov 1967). The scattering 
of sound has been considered not only for non-uniformities of composition but also 
with regard to  turbulence and shock waves (Lighthill 19531, and a kinetic-theory 
method may be used (Howe 1973a, b ) .  The last reference considers multiple scattering, 
an example of which is the reflexions that can occur in the interior of a double-sided 
region, such as a slab of material acting as a noise shield (Howe 1976). I n  the model of 
a plane moving interface (Miles 1958; Howe 1975), there is the implied question of 
the possible effect of sound on the instabilities of a tangential discontinuity of velocity 
(Jones & Morgan 1972), which does not appear to  have been examined with regard 
t o  the randomly unsteady and non-uniform velocity profiles of a turbulent shear 
layer. 

1.2. Interpretation of ‘noise’ as information 

The noise developed by a signal may be interpreted as furnishing information regarding 
those properties of the wave-bearing medium that are responsible for refraction, i.e. 
scattering and/or diffraction. This point of view is illustrated by the case of sound 
propagating across a turbulent shear layer which forms the mixing region of a jet. 
If the ambient medium has different physical properties, then a t  low frequencies the 
changes in density (and wave speed) may be assumed to  occur fairly abruptly across 
an interface of irregular and unsteady shape. The entrainment of the ambient fluid 
by the interface may be represented by a region of turbulence, which introduces an 
additional refraction mechanism in the form of localized velocity fluctuations small 
compared with the mean convection velocity but with random directions. 

A wave component incident on a turbulent shear layer will emerge with a changed 
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direction of propagation and a distinct frequency determined by the time-dependent 
diffractive crinkling of rays by turbulence and the location on the interface a t  which 
scattering occurs. These effects are described by amplitude and phase changes, 
applying differently to each wave component of a coherent beam emitted, say, by a 
source in the jet and received in the ambient medium as an incoherent bundle. If the 
source and observer are both sited in free space, but separated by a jet acting as a 
shield, the transmission through two turbulent shear layers will result in increased 
incoherence. In  the case of double or multiple shear layers it is necessary to ascertain 
whether multiple internal reflexions can modify significantly the level of noise 
generated, viz. because they may involve a significant fraction of the energy which is 
ultimately transmitted. 

The particular random realization of the turbulent shear layer determines the wave 
field, but the mean radiated energy, which is quadratic, depends on only the correla- 
tions within the turbulence and the interface. This leads one t o  a statistical des- 
cription of both the attenuation of a coherent incident beam and the interference 
between correlated components of the transmitted bundle, which tends to preserve 
some of the energy otherwise absorbed or backscattered by the turbulence. These 
effects appear in the formal analytical expression for the radiation received by an 
observer in the ambient medium, and may be illustrated by an example involving an 
isotropic monochromatic wave emitted by a point source within the jet and observed 
in the ambient medium, where its energy is distributed anisotropically in space and 
spread over a spectrum of frequencies. 

1.3. Signals in nature and for tests 

The noise associated with an initially coherent signal as a result of propagation or 
interference is usually regarded as an undesirable degradation of the quality of 
information being collected. However, if the physical process of distortion is studied 
the noise may be estimated and eliminated from the signal received in order to recover 
as much as possible of the original information. Furthermore, the noise, being itself 
a function of the properties of the medium, provides information about the conditions 
between the source and the observer. As an example we cite the problem of estimating 
the energy of the original signal from a star by taking account of the noise accreted 
during propagation in the galaxy or through intergalactic clouds, the latter possibly 
giving some indication of the velocity of scattering particles in outer space. 

This approach is used in terrestrial conditions; viz. by transmitting a known test 
signal through a substance to ascertain its properties without the necessity of taking 
measurements in its interior. In  laboratory conditions an appropriate choice of signal 
can give high accuracies, e.g. the acoustic determination of the gas constant (Chandler, 
Colclough & Quinn 1976). In  industrial conditions the temperature of hot materials 
or the composition of easily contaminated chemicals may be similarly determined 
without recourse to probes. In  geophysical studies of atmospheric events or of the 
structure of the earth’s crust a single signal can provide an indication of the average 
conditions along its path of propagation. 

This introduction ( 5  1) suggests that the following sequence of topics be discussed: 
the determination of the effective reflexion and transmission coefficients which 
describe scattering and diffraction of a plane wave component ( 0  2); the construction 
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on this basis of the fields refracted by single or double turbulent shear layers (Q 3); 
the application of the statistical properties of the medium to determine the directivity 
and spectrum of the transmitted radiation (Q 4). A preliminary verification of the 
theory with reference to experiment is also included (figure 3). The analytical methods 
would apply generally to acoustic, elastic and electromagnetic waves in, respectively, 
fluids, solids and dielectrics with analogous random properties, but bearing in mind the 
subsequent application (in part 2) to the spectral broadening of experimental and 
aircraft noise, we shall concern ourselves with the equattions and the terminology of 
aerodynamic acoustics. 

2. The reflexion and transmission coefficients 
For the purpose of examining the scattering of sound, our theoretical model of the 

shear layer will be assumed to consist of an irregular and unsteady interface across 
which the properties of the flow change discontinuously. This model suffices when the 
wavelength greatly exceeds the mean shear-layer width, but at  higher frequencies it is 
necessary to take account of the details of the flow in the interior of the shear layer. 
The correction for the propagation of higher frequency sound through the turbulent 
shear flow will be based on the approximation of geometric acoustics. 

2.1. Xcattering by  a moving interface 
We consider (figure l a )  an interface of irregular and unsteady shape whose mean 
position is the plane x3 = 0 and whose height, i.e. the vertical displacement from 
x3 = 0, is given by x3 = f ( y , t ) .  If the interface lies between a stationary ambient 
medium and a jet of velocity V, we assume that it convects with velocity olV (0 < a < 1)  
and that its height depends on the moving co-ordinates y = x - aVt.t If the jet and 
ambient fluids are different we denote their mass densities and speeds of sound by 
(p,c) and (po,co) respectively. Of the dynamical variables, the pressure P and the 
normal displacement 2, = Z . N  of a fluid particle are continuous a t  the interface, 
where N denotes the unit normal. These are related by the momentum equation 

p(a/at+V.V)2Z+vP = 0,  ( l a )  

( I b )  

which for an incident plane monochromatic disturbance of radian frequency w and 
wave vector k reduces t o  2, = {qk. N) p/P(o - k .  ~ 1 2 1 .  

The corresponding locally scattered waves are also plane if the interface is locally 
flat, i.e. its radius of curvature is much larger than the wavelength (Kirchhoff’s 
scattering approximation, see Born & Wolf 1970, p, 378). Denoting by ki, k, and k, 
the wave vectors of the incident, reflected and transmitted waves respectively a t  the 
element of the interface with position vector X = (y, f ) ,  continuity of pressure implies 
that 

in which the amplitude of the incident wave is taken to be unity and R and T denote 
respectively the local reflexion and transmission coefficients. The continuity of fluid- 
particle displacement along the normal requires that 

exp(ik,.X)+Rexp(ik,.X) = Texp(ik,.X), P a )  

( 2 b )  
N 
- . (ki 

exp (ik, . X) + Rk, exp (ik, . X)) k, . N 
= T- exp (ik, .X). 

P (w-ki.V)2 (W - k, . V)2 Po W2 

t y is used in this sense throughout the analysis. 
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FIGURE 1 .  Refraction of sound by a shear layer. (a)  Scattering by an irregular 
unsteady interface. ( b )  Diffraction of rays in a region of turbulence. 
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We assume in the first instance that the scattering elements may be regarded as 
horizontal (parallel to r3 = 0 ) ,  either because the undulations of the interface are 
shallow or because the irregularities, being random, have zero slope on average, the 
slope being correlated over scales much smaller than those for the interface height. 
Then the horizontal wave vector g (i.e. wave-vector components g,, g2) is conserved, 
whereas the vertical wavenumber (i.e. the component along the x3 axis) is given by 

y ( g )  = {(w-g.v)2/c2-92)*, r(g) = {w2/c,;-g2)$, (3a,  b )  

respectively, for the incident a.nd transmitted wave and by - y for the reflected 
wave. Thus setting ki = (g, y ) ,  k, = (g, - y )  and k, = (g, I?) when solving (2a,  b )  for 
the reflexion and transmission coefficients, we find 

in which M = V/co is the Mach number of the jet and 8 the angle between the velocity 
of the jet and the direction of incidence. The phases 274 for reflexion and ( y -  I?)[ 
for transmission (Howe 1976) are both determined by the product of the displacement 
of the interface and the respective differences in the vertical wavenumbers. In the 
present approximation the variation of the amplitude is specified by the properties 
of the media alone, and may be represented in terms of an amplitude factor which is 
equal to  

a,@) = p r / p o  y for media at relative rest (Rayleigh 1945, p. 8O) ,  

a l (g )  = (1 - AI cos 0)2 ao(g )  for incidence from within the jet (Howe 1975) 

a 2 ( g )  = (1  - 4Ic0sO)-~u~(g) for incidence from outside the jet. and 

In the three cases the reflexion and transmission factors, given respectively by 
(RI = (1 -a)/(i + a )  and IT1 = 2/(1 +a) ,  imply tha t  1 + IR( = IT/, and therefore that 
the energy is locally conserved during scattering by smooth or irregular interfaces. 

The preceding model of an irregular interface as a planar array of horizontal scat- 
tering elements (Clarke 1973) can be refined within the confines of Kirchhoff's approxi- 
mation to account for the slope as well as the height of each facet, as in a directed 
array. The wave vector is now conserved transverse to a sloping flat element, i.e. 
the difference between the incident ( g i ,  y )  and transmitted (g,, r) wave vectors (which 
we have separated into horizontal and vertical components) lies along the normal to 
x3 = [, which to O(lV(12) is specified by N = (-Qt, l), i.e. 

(st, -giJ ( a c / a x P  = Y(%) - r(g,) = (st,-si,) (%/%-l. ( 5 )  

We emphasize that the horizontal wave vector is not conserved: g i  $. g, in (5). This, 
together with (3a ,  b ) ,  may be used to write the incident vertical wavenumber in the 

( 6 4  
two forms 

K 3 g,+k,(c,/c) M, k, = {G2+ [ m t ) l y .  ( c b ,  c )  

Y ( & ) - Y ( g d  = (1 - r(gt)/y(gt)>K.vc+0(/V5l2), 
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The coefficient {~ /ag, } , , , , ,  = - K/2y(g,) introduces the deviation vector K, which 
varies between k,(c , /c)M (where M = V/c, is the Mach vector of the jet) for 
vertical transmission to kf{(c,/c) M 5 n,} for propagation in grazing directions (n, 
being the wave normal projected on the horizontal direction: nt = g , / g t ) .  Equations 
(2a, b )  remain valid when ki = (gi, y )  and k, = (g,, r), and may be expressed in terms 
of g, alone by use of (5) and (6a) ,  e.g. in the case of the phase shift @a due to trans- 
mission across a sloping interface we have 

where y ,  r and K are specified by (3a, b )  and ( 6  b ,  c ) .  The phase shift @a is proportional, 
through the difference in the vertical wavenumbers (calculated from the horizontal 
transmitted wave vector g,), to the height of the interface minus the projection 
y.V[ of the slope on the mean plane plus a cross-product V(&C2) = tV[ involving the 
deviation vector K. 

2.2. Phase diffyaction in turbulence 

We now consider the correction to be applied to the above results in the case of short 
wavelengths, where the propagation of sound is affected by the turbulence within the 
shear layer (figure 1 b) .  The local turbulent perturbation velocity relative to  the 
velocity aV of the mean shear flow is denoted by U, and is of random direction m and 
magnitude IuI N /3V (0 < /3 < a). If  the Mach number of the turbulence M' = \ul/c is 
small the local flow may be regarded as incompressible. The propagation of high 
frequency sound in a non-uniform but homogeneous flow is described by the convected 
wave equation 

{[a/at+(aV+u).V]2-c2V2}Yexp(i@) = 0, 

for which a solution is sought in the form of a transmission coefficient consisting of 
amplitude and phase functions, denoted by Y and @ respectively. On double applica- 
tion of a linear differential operator L, t h e  real and imaginary parts of 

(8) 

exp (-i@)P{Yexp (i@)} 

are, respectively, L2Y -Y(L@)2 and YL2@ + 2(L@) (LY).  Noting that the wave 
equation corresponds to the operator equality L: = Lq, where L, = D/Dt is the material 
derivative and L, = cV, and equating the real and imaginary parts, we obtain 

(D@/Dt)* - c ~ ( V @ ) *  = Y-1{D2YP/Dt2 - c ~ V ~ Y } ,  

D2@/Dt2 - c2V2@ = - ZY-l{DY/Dt D@/Dt - c~VY. V@), 

(9a)  

(96) 

which describes the evolution of the amplitude YP and phase @. The perturbation of 
the mean flow is specified by the turbulent velocity ~ ( y ,  t )  appearing in the material 
derivative D/Dt = a/at + aV . V + u . V. 

The amplitude Y varies significantly on the scale of Che flow 1 while the phase @ 
changes by 271 over a wavelength A ,  thus the left- and right-hand sides of (9a)  are 
respectively of orders A-2 and 1-2. Since the wavelength is assumed to be small on the 
flow scale (A2 < 1 2 )  it  follows that the phase satisfies the convected eikonal equation 

{a@/at+ (aV+u) .V@}2-C2(V@)2 = O(A2/12) .  (10) 
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The derivatives of the phase with regard to position and time define respectively the 
wave vector k and minus the frequency - w ,  thus the compatibility relation 

a w p x a t  = aZ@/atax 

appears (Lighthill 1964) as conservation of the number of waves, with 

k E V@, ak/at + VW = 0, w E - a@./at. (1 1 a-c) 

The geometrical-acoustics description of the propagation of sound along rays implies 
the conditions (V . k)2 < k4, (Dw/Dt)2 < w4 and (Dk/Dt)z ,  (Vw)Z < k z d ,  which require 
that the frequency and the wave-normal direction n = k / k  vary slowly on a scale 
of the wavelength or wave period. Substitution of ( 1  1 a ,  c )  in (10) leads respectively 
to the dispersion relation and the group velocity: 

w ( k ) =  c k + ( a V + u ) . k ,  w = aw/ak = c n + a V + u .  (12a,b)  

These equations show that rays issuing radially from a point source have a drift 
velocity W, E w - cn which is associated with transport by the shear-layer flow and 
consists of (i) uniform convection at  the mean velocity aV,  which preserves the 
straightness of the rays relative to the source, and (ii) random deviations by the 
turbulence u, whose componenb u, = u x n transverse to the mean direction of 
propagation causes ' crinkling ' of the ray paths. 

In the presence of convection by the mean flow alone the eikonal equation (10) 
implies that k and w remain fixed for propagation along the characteristics of ( l o ) ,  
viz. the rays whose directions are defined by the group velocity ( 1 2 b )  with u = 0.  
The inclusion of the turbulence introduces a disturbance CD = CD, + Qb and the exact 
eikonal equation (1 0) may be written as ( a / a t  + (aV + u) . V} (CD, + C D b )  = - ck, in which 
to first order the total wavenumber k = IV(@, + @,.,)I is approximated by 

k = k, + no. VQb, 

where k, and no are unperturbed quantities. Neglecting nonlinear terms and sub- 
tracting the equation for the mean state, we obtain the following equation for the 
phase perturbatioa: 

where k and n now denote respectively the unperturbed wave vector and the wave 
normal. Equation ( 1 3 )  states that, in a first approximation, the perturbation of the 
phase along a convected ray is caused by turbulent transport of the mean wave vector, 
corresponding to a retardation if k . u < 0 and an advance if k . u > 0.  Introducing 
the derivative along the mean convected ray d/dt = a/at + w, . V, with w, = cn + aV,  
and noting that d/dt 2: cdlds, where ds is the arc length, (13) is written in the form 
dCD/ds = k . u/c, and may be integrated along the ray to  yield 

(13) (a/at + ( a V +  Cn) . v} Qb = k .U + o( (v@b12), 

@ b ( X ,  t )  = p & f ( C , / C )  kc, c(X - avt, t )  E n . m ds. (14a, b )  19 
In (14a) ,  Qb denotes the total phase shift caused by the turbulence and is proportional 
to the mean wavenumber and to the Mach number of the turbulence 

31' = u / c  = p (c, /c) M ;  
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Y ( x  - aVt, t )  defines the unit turbulent phase shift as the projection of the direction of 
the turbulent velocity m = u/u on the mean wave-normal direction n integrated 
along t.he ray. The mean phase shift is zero because n . m = 0, but the deviation 
from the mean depends on the length Yof the ray. 

2.3. Conservation laws along a ray 
The preceding results were derived from (ga ) ,  and we now consider (9b) .  Multiply 
through by Y and use ( 1  1 a ,  c )  and (12a) to obtain the following alternative form: 

Y2(Dk/Dt)  + k(DY2/Dt) = - c { Y 2 V .  k + k . V Y 2 } .  (15) 

Introducing the energy density E = kY2 as the square of the amplitude per unit wave 
volume, this equation becomes 

DE/Dt + V . (Ecn) = 0, (16) 

which establishes the balance between the energy flux Ecn radiated relative to the 
mean flow a t  the speed of sound in the direction of the wave normal and the energy 
content of a convected region C.  Using ( 1 2  b )  this is equivalent to 

aE/at + v . (EW) = O ( E V .  u). ( 1 7 )  

This form of the equation applies to the balance of acoustic energy in a domain A at 
rest; in the case of incompressible turbulence the right-hand side vanishes and the 
energy flux corresponds to  propagation at the group velocity w. The latter was 
calculated from the dispersion relation (12a) ,  which may be expressed in the form 
w = w ( k ,  x ,  t )  to exhibit the explicit dependence on the non-uniformity and unsteadi- 
ness of the medium. Upon differentiation with regard to position and by use of ( 1  1 b )  
we have - Bk/at = ( a w / a k ) .  (ak /ax)  + ao/ax;  observing that the rate of change of 
the wave vector along a ray is dk/dt  = ak/at + (dx/d t )  . (ak/ax) ,  we are thus led to 
the canonical equations (Hamilton 1827-32) 

w = h / a k  = dx/dt ,  dk/dt  = - ih/ax = - V(k  . u),  b )  

in which aw/ax is evaluated a t  constant k from (12a) .  The first equation emphasizes 
that, although wave fronts propagate at  the phase speed cn relative to the medium, 
wave ' packets ' actually propagate at the group velocityw [see ( 1  2 b ) ]  relative to a frame 
at  rest, the two being identical only in a quiescent fluid. The wave vector changes 
along a ray ( 1 8 6 )  because of turbulent transport; in the linear approximation the 
latter is calculated for the mean wave only. Introducing in ( 1 7 )  the derivative 

d/dt = a p t  + w . v 
along a ray, we obtain a third form of the equation of energy balance, viz. 

E - ' d E / d t + V . w  = 0. (19) 

Thus the relative change in the energy density along a ray is compensated by variations 
in the volume occupied by waves; since E = kY2 the amplitude Y of waves decreases 
or increases along a ray tube B in inverse proportion to the square root of its cross- 
section. 

For incompressible turbulence in a convected frame we have, from (12b), 

V.w = c V . n  = cV(k/k)  = ( c / k ) V . k + c k . V ( l / L ) .  
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The term V . k may be eliminated after substitution in (1 9) by applying d/dt and using 
(1 8 b ) :  d (V  . k)/dt  N V . (dk/dt)  = - V2(k. u), where we have ignored a nonlinear term. 
Similarly we omit u . V in the expression rtldt = a/at + w . V for the total derivative 
along a ray, i.e. we may take d/dt N d/dt = a/at + (aV + cn) . V. Thus the energy 
equation becomes 

(20) 

where ks is the perturbation wavenumber and u, = u . n denotes the component of 
the turbulent velocity along the wave normal. The arc length per unit time is just 
the projection of the group velocity dsldt = w . n = c + u,, leading to the approxima- 
tion d/dt - cdlds. Equation (20) therefore reduces to d2(ln ( E l k )  - u,/c)/ds2 = 0,  or 
In Y2 - u,/c = A ,  s + A,, where A ,  are A ,  are constants; taking s = 0 at a point in the 
mean flow (where u, = 0 ) ,  we have A ,  = lnY& where Yo is the incident amplitude and 
A, = 0 because the amplitude should remain finite (except at  caustics) along the ray 
as s -+ 00. Thus 

(21 a, b )  

the relative change in wavenumber being obtained by a similar integration along the 
ray, between (k , ,O) and (k ,~ , ) ,  using (18b), viz. dkldt = -kdu,/ds in the form 
dklk, + du,/(c + u,) = 0. Equations (21 a ,  b )  are valid only in the linear approximation, 
so that the reiative changes in the amplitude and wavenumber (along the ray) caused 
by turbulence are Y/Yo = 1 + +u,/c and klk, = 1 -u,/c. Thus the amplitude and 
wavenumber satisfy Y/Yo = (ko/k)4 (the WKB approximation, e.g. Brekhovskikh 
1960, p. 195) and, also to a linear appioximation, the energy density E = kY2 is 
conserved, i.e. E = E, at each position and instant. The relations become trivial in the 
mean, since U, = 0 ,  thus the wavenumber, amplitude, energy density and amplitude 
squared are all conserved to a linear approximation and to O(uZ,/c2). 

Thus to a linear approximation there is no net exchange of energy between sound 
waves and incompressible turbulence; iti has been shown in $2.1  that scattering by a 
smooth or irregular interface of curvature large on the scale of a wavelength also 
conserves locally the wave energy. However, in the former case there is no mean 
reflected wave and the mean-square amplitude is conserved during transmission, 
whereas in the latter case the amplitude is modified by a factor appearing in (4b). 
This formula applies locally to  a flat scattering element lying horizontally, and is 
extended by (7) to account for a slope in the transmission factor T, = Y,exp (i@>,). 
The effect of incompressible turbulence in the shear layer on the diffraction of very 
short wavelengths is represented by adding to the scattering phase @>, an analogous 
diffraction term @, given by (14a, b )  and corresponding in the first approximation 
to the transmission factor (without amplitude variation Yb = 1): Tb = exp (i@b). 

(d/dt)2 In E - cd2u,/ds2 - cd2(ln k)/dt ds = O(ks u), 

"/Yo = exp (&u,/c), k/k, = 1 -in (1 +u,/c), 

3. The refraction by turbulent shear layers 
The transmission coefficients obtained in the previous section can be applied to 

each wave component of the field generated by any source immersed in the jet, in 
order to specify the field transmitted through the shear layer into the ambient 
medium. When the observer and source are both located in the ambient medium, but 
on opposite sides of a jet, which therefore acts as a noise shield, the transmitted and 
internal wave fields are described by coupled integral equations, which are solved 
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by means of an operator series, accounting for multiple internal reflexions of all 
orders. The acoustic power radiated to the far field can be formally expressed in terms 
of the Fourier spectra received in the ambient medium, the latter including the details 
of refraction by the system of shear layers. 

3.1. Source located in  a semi-inJinite jet 

We consider (figure 2a)  a semi-infinite jet of uniform velocity V containing a point 
harmonic source of frequency w, translating at  a uniform velocity U from the position 
X = X, at time t = 0. The sound field in the jet is described by the convected wave 
equation 

{c-'(a/at + V . V)' - VZ} P(X, t )  = S ( V ,  a p t )  {S(X - X, - U t )  exp ( - iw, t ) }  ( 2 2  1 
together with radiation and boundary conditions. The operatior S ( V ,  a / a t )  specifies 
the character of the source, e.g. this operator is aS,/at for a monopole, S . V  for a 
dipole, Sij axi for a quadrupole, and generally Sal...an aal . .  .aan with a, = (V, a / a t )  
for a multipole of order n .  The solution of ( 2 2 )  is a harmonic Green's function which 
may be convoluted in a Fourier integral with a source of arbitrary spatial and spectral 
distribution F(Y,  w,) to specify its acoustic pressure field: 

+a 

-a 
* Y ( X , t )  = 1 F(Y,w,)P(X-Y,t;o,)exp (iw,t)d3Ydwo. ( 2 3 )  

The wave generated by the source and incident on the shear layer is given by the 
particular integral of ( 2 2 )  for an unbounded medium, and this may be determined 
by Fourier analysis: 

+ m  

- m  
P , ( X , t )  = 1 Q i ( k , w ) e x p { i ( k . X - w t ) } d 3 k d w ,  (24a) 

where 
S(ik, - i w )  exp ( - i k .  X,) 6(w - wo- k .  U )  

(W - k . V)'/C' - k2 Qi& W )  = 

The poles of Qi(k, w )  may be used to evaluate the k,-integral in (24a)  by the theorem 
of residues, giving 

in which 

y(g) = { { ~ o + g . ( U - V ) } 2 / ~ 2 - k 2 } ~ ,  S ( g )  e S ( - i g ,  - i y , i ~ , + i g . U )  ( 2 5 b , c )  

( - h = X,, denotes the vertical co-ordinate of the source and x3 > - h) .  The branch 
of the square root y chosen for the incident field should be real and positive for waves 
propagating upwards (in the x3 direction) and negative and imaginary for evanescent 
waves. We may exclude the evanescent waves, which decay like exp ( - ly(h) ,  in the 
specification of the incident wave field just below the shear layer provided that 
h B  A. 

Each plane-wave component g of the incident wave is modified on transmission 
by multiplication by the coefficient A exp (ill), which consists of (i) an amplitude 
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FIGURE 2. Transmission of noise from or through jets. (a)  Source immersed 
in a semi-infinite jet. ( b )  Shielding by a jet of finite width. 
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factor A due to scattering by the interface, given by ( 4 b ) ,  the effects of the slope ( 7 )  
being omitted for the sake of brevity, and (ii) a phase shift 7, which is caused both by 
scattering by the interface and by diffraction of rays in the turbulent region (14a) 
Thus 

where y = x - aVt are co-ordinates moving a t  mean shear flow velocity and 

k = + [r(8)I2}4 r(g) = { (w ,  + g . v 2 / c ;  - g2}* (26c, d )  

are the incident wavenumber and the locally transmitted vertical wavenumber, 
respectively. The transmitted wave just above the shear layer is obtained by formally 
inserting A exp (ir) in the integrand of (25a):  

p t (Y ,X, ,  t )  = I S + m  87r2 - m  (AS/y)exp{i[g.y+ rx3+r(y,t)i-i[w0+g.(~-a~)1t}d2g, 

( 2 7 a )  

where it is implied that the horizontal wave vector g is conserved during transmission, 
in agreement with the expressions ( 2 5 b )  and ( 2 6 d )  respectively for the incident and 
locally transmitted vertical wavenumbers. The acoustic pressure P ( y ,  x3, t )  in the 
ambient medium should be equal to Pt as given by ( 2 7 a )  at the instantaneous position 
of the interface x3 = g, or, assuming that this boundary condition can be shifted to the 
mean plane x3 = 0, we have P(y,  0, t )  = Pt(y, x3 = 0, t ) .  The field P in the ambient 
medium can be represented as a Fourier integral over a spectrum function Q(K, w ) ,  
and in particular, on the plane x3 = 0, Pt is the corresponding space-time Fourier 
transform of Q, i.e. 

+ m  

&(G,w) = - 1 Pt(y, t )  exp { - i{G . y - (w - aV . G)} t}  d2y dt,  (27b)  
8773 -m  

in which G and w denote the (received) horizontal component of the wave vector and 
the frequency, respectively, of the  free-space sound field. 

Equations (27a ,  b )  show that the acoustic spectrum Q in the ambient medium may 
be obtained by applying an integral operator t o  the source streneh Sly  modified by 
propagation in the jet, i.e. by Q(G, w )  = T{S/y} ,  where 

J-UZ 

+ i { ~  - W O  - g . U + aV . (g - G)} t }  d2g d2y dt . (28 )  

This describes the overall effect of transmission through the shear layer, and involves 
integrations with respect to g over all the components of the incident wave. For a plane 
interface 7 = 0 and the integrations over space and time give delta functions S(g - G) 
x 6(w - w * ) ,  where w* = wo + g . U and the transmission operator degenerates into a 
multiplication by the transmission factor A [see (26a)l  evaluated with g = G and 
w = w * .  Otherwise, for a turbulent shear layer ( 2 7 a )  is not a plane-wave decomposition 
of the transmitted field, since the phase shift r ( y , t ) ,  given by (26b) ,  is a random 
function of y and t and thus implies random changes in the frequency and direction 
of the transmitted waves which are expressed in the spectrum Q( G, w )  received in the 
ambient medium through the integral transmission operator T ,  defined by (28) .  
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3.2. Jet of finite width as a noise shield 

Consider the case illustrated in figure 2 ( b )  of a moving source and an observer at rest 
both located in the ambient medium on the opposite sides of a two-dimensional jet of 
uniform velocity V. We assume that the distance between the two shear layers, whose 
mean planes are x3 = & d,  is large on the scale of a wavelength (2d 9 A) ,  so that the 
processes of scattering in the upper and lower layers may be considered independently. 
We have to consider four cases of refraction, each consisting of diffraction in a tur- 
bulent region and scattering by an interface. 

(i) Transmission across the lower shear layer (with mean plane x3 = - d )  from the 
ambient medium into the jet, described by a lower transmission operator T- similar 
to (28)  except for the transmission factor A _ ,  which, as noted in $2.1 ,  differs from 
(26a)  by a factor (1 - M cos r3-2: 

q f ( g ) )  = q f ( g ) ) , - ,  A- = ~ ( ( 1  -Mcose)-2). (29a)  

(ii) The field incident on the upper shear layer has become partially incoherent as a 
consequence of transmission through the lower shear layer, thus the upper transmis- 
sion operator T+ involves in addition an integration over a spectrum of incident waves: 

i.e. the tone wo + g . U is formally replaced by a band w .  
(iii) Backscattering at the upper shear layer is described for partially incoherent 

fields by the upper reflexion operator R+, which involves the reflexion factor B+ 
which appears as an amplitude in ( 4 a ) :  

in which 

@+(g*, w * )  = {@+- g-) . Y  +8+(Y, t ) } + { w + - w - +  (1 - a ) V .  (EL- g + v .  (30b)  

(iv) Backscattering at  the lower shear layer is described by the lower reflexion 
operator R-, given by an expression similar to (30a)  with & signs interchanged (also 
for @-) and with B- = B+{( 1 - iW cos O)-Z}. 

For upper (i, iii) and lower (ii, iv) scattering the height of the interface in the phase 
shift (26b)  is respectively 2 d +E* .  

These four integral operators may be used to describe the fields both inside and 
above the jet due to a source below in the ambient medium. The waves propagating 
upwards in the jet, Q+ say, are a result of transmission through the lower shear layer 
from the source a d  of lower reflexion a t  the shear layer of downward-travelling 
waves, Q- say, i.e. 

Similarly the upward-propagating waves Q+ generate by reflexion at  the upper shear 
layer the downward-travelling waves Q-, i.e. 

(31a)  &+(g+, a+) = T-{(s/Y)g} + R-{Q-(g-, w-)}. 

Q-(g- ,  m-1 = R+{Q+(g+, @+)I, 

&(G, W )  = T+{Q+@+, o+)>. 

(3 'b)  

(32)  

and the field radiated to the observer is given by 
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In order to determine Q from (32), we have to solve the pair of coupled integral 
equations (31 a, b )  for the fields in the double layer, generalizing those of Howe (1976). 
Equations (31 a, b )  resemble respectively integral equations of the first and second 
kinds (Whittaker & Watson 1927, chap. xi) coupled by an interchange of the inte- 
grands and uncoupled by substitution of one in the other, e.g. for Q+ 

Q+@+, a+) = T-{(fl/Y)g} +R- R+{&+(9+, o,)}. (33) 
This integral equation of the second kind states that upward-propagating waves in 
the jet arise from the transmission of waves from the source plus double reflexions 
of themselves a t  the upper and lower shear layers. Equation (32) may be solved 
by iteration (Liouville 1837-8); using the symbolic notation for operator series 
(1 - R- R+)-l = 1 + R- R, + R- R, R- R+ + , . . and (32) leads to the following oper- 
ational form of the transmitted Fourier field: 

Q(G, W )  = S{(S/y),), X T+( 1 - R- R+)-'!Z!!. (34% b) 

Equation (34b) defines the overall refraction operator S, which should be read in 
order of application from right to left and consists of a transmission from the source 
to the jet followed by multiple reflexions of all orders n = 0, ..., 2N, ..., within the 
latter, and transmission from the jet to the ambient medium. 

The nth-order term in (33b), T+(R- R+)nT-, is an integral of 11 + 12n dimensions 
in the fields, corresponding (as will be shown in 0 3.3) to 26 + 24n dimensions for the 
intensity. The terms which may be necessary to determine to a specified accuracy 
the sound field transmitted through a double shear layer may be expressed using 
the integral operators (28)-(30) much in the same way as in the zero-order approxi- 
mation, which is &,(G,o) = D{(S/y),}, where D = T+T- and involves successive 
transmissions at the lower and upper shear layers. From (29a, b) follows the double 
transmission operator for a turbulent shear-layer shield: 

Wfg)} = ( 4 ( 2 w S _ + 1  f ( g ) A - ( g ) A ( g + )  

x exp{i{(g-g+) .y-+~-(y-,t_))+i{w,-w,-g.U+aV.(~-~+)}t-) 

x exp ( i { (g+ - G).  Y+ + T+(Y+, t+)> 
+ i{w - w+ + aV . (g+ - G)} t+} d2gd2y- dt- d2g, do, d2y+ dt+, (35) 

in which the integrations reveal that the coherent field d2g incident on the lower layer 
d2y- dt- has become partially incoherent after the first transmission d2g+ do+, the 
incoherence being increased by the second transmission across the upper shear layer 
d2y+ dt+. 

3.3. PowerJlux of the radiation3eld 

In both the single-layer problem (3.1) and the double-layer problem (3.2) we have 
assumed the ambient medium to be at  rest, the jet to have velocity V and the source 
to  be in motion at  velocity U. The results, such as (28) and (35), will also apply when 
the ambient medium is in uniform motion at  velocity V,, provided that the co-ordinate 
system is assumed to move at this velocity so that y --f y - V, t and the jet and source 
velocities become respectively U - V, and V - V,. The effects of the motion of the 
ambient medium can be included in the intensity of radiation by means of Doppler 
factors do = 1 - (V,/c,) cos6, and we need consider only the case when the ambient 

FLY 89 25 
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medium is at rest. The transmitted acoustic power W is defined as the flux of energy 
Pv, across a horizontal plane (2, = constant > 0 )  situated above the shear layer, 
averaged for all time : 

W = lim s“/ P(y, t )  v,(y, t )  d2ydt. 
r-+a,27 -7 - m  

(36) 

The pressure in the ambient medium is the Fourier transform of the acoustic spectrum 
(or observer Fourier field) Q, i.e. 

P(y,x,,t) = 111 Q(G,w)exp{i(G.y+ I?z,-wt)}d2Gdo, (37a) 

and on substitution of (28) and (35) we obtain the explicit wave fields in the ambient 
medium for the single and double shear layers respectively. In  the latter case the 
higher-order approximations, which involve multiple reflexions, can also be included 
[by means of (34a, b) ]  in the spectrum Q, which describes the effects of refraction 
for any specific system of shear layers, whether single, double or multiple, and thus 
the function Q may be used in a general expression for the acoustic power W .  The 
latter is given by (36) in terms of the pressure P and the vertical component of the 
acoustic velocity v3, which are related in free space by the equation of momentum 
po &,/at + i3p/8x3 = 0, i.e. for each wave component dr wv, = (I?/po) P ,  where the 
Doppler factor AT = 1 -Mocos6 accounts for the motion of the source with Mach 
number M, = U/c, .  Thus v3 is given by 

v3(y, x,, t )  = l Q(G, w )  ( r /w&po)  exp {i(G . y + J?x3 - wt)}d2Gdw. 
+m 

(37b) 
- m  

Substitution of (37a, b )  in (36) gives 

x exp {i{(G - G’) . y + (I? - r’*) x3-  (w - 0’)  t)}d2G’dw’d2Gdwd2ydt), (38) 

where an asterisk denotes a complex conjugate and G’ and w’ are marked with primes 
to distinguish them from G and w .  The spatial integration is an example of the Fourier 
integral property 

(+“f(G’)exp{i(G‘- G) .y)d2ya?G’ = ( 2 ~ ) ~ f ( G ) .  (39) 
J -m 

The temporal averaging gives the continuous Kronecker delta function, defined as 
unity if the variables are equal and zero if they are unequal: 

exp{i(w‘-w)T}dr = &,w,. 

Equations (39) and (40) simplify (38), which vanishes identically when I? is pure 
imaginary, showing that evanescent waves do not radiate energy to the far field, i.e. 
the range of integration in wave-vector (or wavenumber and frequency) space is 
determined by the (propagating) incident and transmitted modes only : 
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Choosing spherical polar co-ordinates (figure 2a) with origin at  the source, the 
axis 0 = 0 parallel to  the x1 axis (i.e. parallel to the velocity of the source U, which 
is parallel to V) and g5 = 0 in the ‘fly-over’ plane (perpendicular to the shear layer’s 
mean plane x3 = 0) allows the received wave vector to be expressed as 

K = (G,I’) = (w/c0)(cos8,sin0sin~,sinBcosq5). 

The (xl, z2) wave-vector element d2G = (aG,/ae) (aG,/a$) d0 dg5 can be written (Howe 
1975) in terms of the solid-angle element dQ 3 sinBdBdq5, which is integrated over the 
half of the unit sphere specified by - in < q5 < #n, which we denote by 

w = (2+/p0 c:) ((sin20 cos2 $)/(I  - M, cos e)) 
Rey,  r 

x j  w2Q(G,w)S, , .&*(G,w’)dw’dRdw. (42) 

The acoustic power can be made explicit by substituting for Q and Q* for the shear- 
layer system being considered, e.g. using (28) for single and (35) [or (34a, b ) ]  for 
double shear layers, the dodw‘ inhgrations being trivial in the case of a plane interface 
7 = 0. In  the presence of turbulence or irregularities, the incoherent phase term 
exp { i [ y ( y ,  t )  - ~ ( y ’ ,  t ’ ) ] }  depends on the particular realization of the shear layer, or, 
when averaged, on its correlation properties. 

1% 

4. The statistics of energy propagation 
Although it has been shown (in $1) that the refraction of sound in a turbulent 

shear layer conserves energy to a linear approximation, the correlation of phase shifts 
evinces a nonlinear effect of attenuation of the transmitted wave. This is associated 
with part of the acoustic energy being absorbed or re-directed by the corresponding 
components of the turbulence spectrum, the resultant attenuation being compensated 
for partially by the interference between correlated components of the refracted 
wave. These random effects are expressed by means of statistical scales appearing in a 
characteristic function for interference and an autocorrelation coefficient for turbulent 
diffraction, which appear to be consistent with the experiments of Schmidt & Tilmann 
(1 970) and Ho & Kovasznay (1976a, b ) ,  respectively, and complete the specification 
of the energy field transmitted into the ambient medium. 

4.1. Characteristic attenuation and interference 

The random phase shifts (26b) resulting from the transmission of sound through a 
shear layer are of the form exp {ip(g) u(y,  t ) } ,  both for scattering by the irregular 
interface, with p = y -  I? and u = 6,  and for diffraction by the turbulent region, with 
p = /3Mk(co/c) and v = 5. The acoustic power, being quadratic, involvesalsop‘ = ,u(g‘), 
which is evaluated a t  a different wavenumber g’, corresponds to a distinct event 
u’ = u(y’, t ’ )  and gives rise to a phase difference that may be averaged over all possible 
realizations of the shear layer: 

C(P,rU’) = (exP{i{P~(Y, t )  -P’U(Y’, t’)>>>. (43) 

From the point of view of the mathematical theory of statistics (Kolmogorov 1950) 
we must consider a bivariate random process defined by the phases v and u’ for which 

25-2 
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(43) is the joint characteristic function (von Mises 1960). The latter describes com- 
pletely the statistics of the process since, when expanded in a double series, it gives 

where the Mnm define the moments of the distribution. 
The first-order moment is the mean value M,, = (u), which is identically zero for 

either the displacement of the interface or the random phase shift along a ray passing 
through the turbulence since (t) = 0 = (Q. The second-order moment MI, = (uu') 
for a stationary random process depends on only the spatial and temporal separations 
z = y - y' and i- = t - t' and is known as the autocorrelation function 

m, 7) = (4Y, t )  4 Y  + 2, t +TI). (45a) 

The latter can be normalized with regard to the other second-order moment, namely 
the variance M,, = u2, to define the autocorrelation coefficient 

E ( Z , 7 )  (T-20(2, i-), C2 = D(0,O) = ({U(y, t ) } ' ) ,  (4% c) 

where IT is a root-mean-square value, which vanishes only for a plane interface devoid 
of turbulence. If the realizations of the shear layer are statistically symmetric about 
the mean plane all the moments whose order N = n + m is odd vanish, and those of 
even order, which satisfy M,, = Mmn and thus are $ N ( N +  1 )  in number, are pro- 
portional to #. In  order to gain a preliminary idea of the form of the characteristic 
function for small r.m.8. values, (43) may be expanded in a single series, and is con- 
sistent to O(a4) with the expression 

C(p, p') = exp { - & ~ 2 [ p 2  +p'2 - ~ P P ' E ( ~ ,  711). (46) 

This characterizes the sound attenuation exp { - &+(p2 +p'2)} and the amplification 
effect exp {u2pp'E} of interference between correlated diffracted waves, which can 
compensate partially for the loss of energy p2 +p'2 > 2pp'E for separate events E < 1 .  

In order to identify the random process corresponding to a given characteristic 
function we note that from the definition (43) the latter is the Fourier transform in 
(uu ' )  of the probability density function F(u, u') .  Applying the Fourier inversion 
theorem in (p,p') to (46), we find 

1 1 u2 + u'2 - 2uu'E 
P(u, u ' )  = - 

27ru2(1- E2)texp [ - 2u2(1 - E2) (47) 

i.e. the probability density function of a bivariate Gaussian or normal random process. 
This result, that the propagation of sound in a turbulent shear layer may be approxi- 
mated by a normal process, may be established if we consider a sequence of realizations 
i-, separated by more than a correlation time, T,-T,-~ > Lo, to be statistically 
independent. Using the notation of a univariate process, in the interests of simplicity 
of writing, if the probability density of the nth realization of the shear layer is F,(u), 
the overall probability density function 

.K 

n = l  
FN(u) = II &(u) 
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will converge to a Gaussian function as N -+ co, according to the central limit theorem, 
if and only if Lindeberg’s (1922) condition is met, i.e. 

If the shear layer contains turbulence and/or irregularities, i.e. 00 > 5 > B, > 3 > 0, 
the total variance 

N 

n= 1 
B&= c B; 

and the r.m.s. deviation cN > N t  8 both tend to infinity as N -+ co. Large phase shifts 
are improbable. Let there exist a b such that F!(u)  < A / N  for some A and all (uI > b ;  
then for (any) sufficiently large N such that €aN > eN43 > b, the sum of integrals in 
(48) has an upper bound ?PA, and the condition is met. Also for long time spans 
AT > N L ,  as the autocorrelation tends to zero, according to the ergodic theorem: 

Thus the preceding statements apply equivalently (Khinchin 1948) to averages over 
all realizations (denoted by angle brackets) and over all time (denoted by overbars). 

The physical and mathematical arguments (46) and (47), respectively, for the 
propagation of sound in irregular or turbulent shear layers to be a normally distributed 
random process bear comparison (figure 3a) with the experiments of Schmidt & 
Tilmann (1970). Their measurements of the phase shift of sound transmitted through 
strong turbulence generated by a thick rod in a mean flow and through weak turbulence 
further downstream in the wake of a thinner rod agree approximately with a Gaussian 
probability density. 

4.2.  Anisotropic and unsteady autocorrelation 

We have assumed that the autocorrelation of the phase shift vanishes as the separation 
tends to infinity and becomes negligible for events delayed by more than a finite 
correlation time. Although these properties seem natural enough in the presence of 
turbulence, they are further elucidated by the consideration of (45a) ,  say for the 
total phase shift due to turbulent diffraction, which is given by (14a, b )  as the pro- 
jection of the turbulent Mach vector M = u/c on the mean wave vector k integrated 
along the arc length ds of a ray. It will be shown in $4.3 that only individual wave 
components need be considered, thus 

D(z ,  T )  = ki kj Mij(sn + z, s/c + T )  asst dsds’, (50)  
J-9 

where ass, is the Kronecker delta function, n = k /k  the wave normal and Mij = (Mi Mj )  
the autocorrelation of the turbulent Mach vector. Mij is the Fourier transform of a 
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FIUURE 3. Statistics of the acoustic phase shift. (a)  Probability density function: -, normal 
or Gaussian distribution; + , weak wake turbulence (Schmidt & Tilman 1970); x , strong wake 
turbulence (Schmidt & Tilmann 1970). (b) Autocorrelation coefficient: -, theoretical formula 
(56) deduced in 54.2; + , frequency of test pulse f = 10 kHz (Ho & Kovasznay 1976a, b); x , 
f = 20 kHz (Ho & Kovasznay 1976a, b). 
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turbulence spectrum N,,(K,x) (Batchelor 1953, chap. 2). We may expand Mtl in 
power series in the spatial separation z and time delay 7,  

since the problem involves a large parameter, viz. the length of the ray measured on 
the scale of a wavelength. 

On substitution of (51) in (50) the ds integration may be extended to  (-m, +a), 
because Mi, vanishes outside the turbulent region, and gives a Dirac delta function 
6(n. K - x / c ) ,  which shows that the spectral components of turbulence whose phase 
speed in the wave-normal direction equals the speed of sound x / n  . K = c are responsible 
for the diffraction of acoustic waves. We may thus introduce the reduced turbulence 
spectrum in the wave-normal direction: 

N(K) = n,n,N,,(K,cn.K), (52) 

whose integral over the turbulence wave-vector space W appears in the zero-order 
term in D, i.e. the variance of the total phase shift 

D(0,O) = ck2 / s N(K) &%ds = {pM(c0/c)  k}2 (Y2), (53 a, b )  
Y W  

which specifies, noting (14a) ,  the variance of the unit phase shift. We assume N to be 
an even function (e.g. because D(z ,  t )  is a s%atistically stationary function), i.e. 
N(K) = N (  - K), in which case all terms of odd order in p or q vanish and the lowest- 
order non-zero terms in the expansion [after p = 0 = q;  see (53)] are p = 2 and q = 0 
and vice versa, yielding 

in which L, and L2 have the dimensions of length and Lo those of time. If the tur- 
bulence is isotropic, i.e. Nii(lc, x )  = A ( K )  ( K ~  K, - K ~ S , ~ ) ,  then N ( K )  = A(K)  {(IC . n)2 - K,}, 

which averaged over a sphere I K (  = constant is independent of n, as are (53a) and 
(54). The quantities L,, L, and Lo vary inversely with the K~ and K, components of the 
turbulence wave vector and the frequency of the turbulence x ,  respectively, and are 
thus large in weak turbulence and smaller in stronger turbulence, characterizing the 
scales over which significant diffraction occurs. These quantities would be infinite only 
in the absence of turbulence, and generally define three scales of a turbulent and 
irregular shear layer: the refraction time Lo and the longitudinal and transverse 
refraction lengths L, and L,. 

On substituting (53a) and (54) in (51) and neglecting terms O(z4, Z ~ T ~ ,  74), the 
three-dimensional autocorrelation coefficient for general anisotropic and unsteady 
turbulence may be mitten in the form 

which consists of factors involving respectively the longitudinal and transverse 
separation and the time delay (z,, z2 and 7 )  and the corresponding refraction lengths 
and time (L,, L, and ho). The one-dimensional autocorrelation E(z /L)  is the Fourier 
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transform of the reduced turbulence spectrum, e.g. if the latter is Gaussian, i.e. 
N ( K )  = (L/21/n) exp ( - & ~ 2 L 2 ) ,  then E(z /L)  = exp ( - zz/L2).  Thisnegative-exponential 
form (Chernov 1967, chap. 1) ensures that the correlation decays to zero as z - f co  and 
becomes negligible for separations larger than the refraction scale. A whole family 
of autocorrelations can be obtained from the basic form by applying a polynomial p 
of dimensionless derivatives La/aL, e.g., for p(La/aL) = 1 -La/aL, we obtain the 
autocorrelation coefficient 

(56) E ( z / L )  = (1 - 222/L2) exp ( - z2/L2), 

which has the property I+,, E ( z / L )  d ( z / L )  = 0. 

The analogous expression for diffraction by turbulence states that negative and 
positive values of the acoustic phase shift balance over the whole shear layer, and for 
scattering by an irregular interface it implies that 

[(z)G?z = 0, I:," 
i.e. the volume occupied by the jet (or the ambient medium) is constant. 

The spatial autocorrelation coefficient of the phases has been measured perpendicular 
to t@he direction of propagation of radio waves in the atmosphere by Tatarski (1967, 
chap. 5 ) )  who plotted an empirical curve through his experimental results, which 
showed that the correlation became negative beyond a certain separation. The time 
correlations of phase shifts of sound transmitted through a jet issuing from a 12 cm 
nozzle were measured by Ho & Kovasznay (1976a, b); their experimental points for 
frequencies of 10 and 2OkHz have been reproduced in figure 3(b) for comparison 
with the theoretical formula (56). The experimental conditions correspond to a double 
transmission through both shear layers of a jet, so that the correlation is weaker, viz. 
for two statistically independent refractions the autocorrelation is approximately the 
product of correlations with unchanged sign, i.e. El El, a prediction quantitatively 
consistent with experiment (see figure 3b). Both the two theoretical curves and the 
two sets of experimental results, which involve the refraction time Lo defined res- 
pectively by (54) and by the scaling indicated in Ho & Kovasznay (1 976), show that 
the correlation reduces from unity to  zero a t  a time delay of approximately 7 f: Lo/,/2 
and is negative thereafter. 

4.3. Concept of spectral directivity 
The statistical description of sound propagation in a shear layer is summarized 
formally by the characteristic function (46) for Gaussian phase fluctuations, which 
involves the autocorrelation coefficient E and applies in the following cases: (i) 
diffraction by turbulence along a ray of mean length Y in the turbulent region 
increased for oblique incidence at an angle 0 =k +n to the jet velocity by a factor 
cosec 0, so that the variance, given by (53 b ) ,  can be written in the form cr2 E b2 cosec 0, 
where b defines the effective thickness of the shear layer; (ii) scattering by an irregular 
and unsteady interface of root-mean-square height (or displacement) cr = a. If we 
consider one wave component, an assumption to be justified in (58) and (59), then 
p E p' and (46) reduces to exp { - azp2( 1 - E)) ,  where p = /3M (co /c)  k for diffraction 
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in turbulence and p = y - I' for scattering by an interface. The two refraction processes 
are assumed to be skatistically independent because the former involves the local 
turbulent velocity perturbations within the shear layer whereas the latter depends on 
the outward shape of the mixing layer acting as a boundaryof the jet. Thus the product 
of their characteristic functions gives the overall characteristic function for refraction 
by a shear layer: 

(57a) 

(57b) 

C(z, 7) = exp { - &[I - E(z ,  .)I}, 
Q = a2(y - r)2 + P ~ M ~ ( c , / c ) ~  k2b2 cosec 8, 

where the attenuation factor is equal to the square of the r.m.s. height of the irregu- 
larities times the difference in the vertical wavenumbers plus the square of the 
effective thickness of the shear layer times the wavenumber Ic, = ku/c for turbulent 
diffraction. The latter term also includes a factor cosec 8, showing that the attenu- 
ation caused by the turbulence increases towards grazing directions, being present at 
all angles. Conversely, the attenuation associated with scattering by the irregularities 
of the interface increases away from the direction for which y = r, i.e. the wave 
component which is transmitted without deflexion is not attenuated. 

Since it has been shown (in §$S . l  and 2.3) that the processes of scattering by 
irregular interfaces and diffraction by turbulence conserve energy locally to  a linear 
approximation, it is emphasized that the effects described by (57a, b ) ,  which were 
derived by means of a statistical analysis, are nonlinear. Even for turbulence which 
is effectively incompressible (P2M2 < 1 )  the corresponding attenuation [the second 
term in (57 b ) ]  can be non-negligible if the thickness of the shear layer is large on the 
scale of a wavelength, i.e. k2b2 = (2nb/h)2 B 1 .  Similarly (away from the direction of 
undeflected transmission y = I?) the attenuation associated with scattering by the 
interface is significant if the r.m.s. height of irregularities is large on the scale of a 
wavelength, i.e. k2a2 = ( 2 n a / h ) 2  9 1.  The attenuation exp ( - Q )  can be realized only 
for uncorrelated events which are separated or delayed by more than a refraction 
length or time (zl > L, or x2 > L, or 7 > Lo); otherwise, for correlated events (2, < L, 
and z2 < L, and 7 < Lo) the preceding attenuation cannot be achieved, because (57a) 
involves exp ( + QE),  which appears as an effective amplification by interference 
between correlated components of the refracted wave, which preserves some of the 
energy for separate events since E < 1. 

The statistics of refraction (which were assumed stationary) depend on the two 
events ( y ,  t )  and (y ' ,  t ' )  only through the separation and delay z = y - y' and 7 = t - t ' ,  
and these may be taken as dummy variables instead of ( y , t )  when performing the 
substitution of the fields, e.g. ( 2 8 ) ,  in the expression ( 4 2 )  for the acoustic power, viz. 

c 

W = {2n2/p0 cz(64n6)2} Re J {sin2 8 cost #/(I  - M, cos O ) }  
Q 

x / : Iw2(AS/y )  exp {i(g - G) . z + i{o- wo- 2. U + av. (g - G)}T} 

x (AS/y) '* exp { i ( g  - g') . y' + i{w - w' - (g - g') . (aV - U ) }  t'} 

x CY,,,~~ C(Z, 7) d2g'd2y'dt'd2gd2zdTdw'dndw. (58) 

The result (39) permits six of the integrations to be performed trivially, by setting 
g = g' and w = w ' ,  justifying our consideration of a single wave component in (57). 
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No further trivial integrations are generally possible for a turbulent or irregular shear 
layer and we have 

Rey, r 
W = {8(27~)~p,  c:}-l {sin2 B cos2 #/( 1 - M, cos e)} J j* (AS4y)2  C(Z, 7 )  

x exp { i (g  - G )  . z + i{o - w, - g . U + aV . (g - G ) }  T }  d2gd2z d ~ d R d o .  (59) 

Formula (39) would be applicable again only in the case of a plane interface devoid 
of turbulence (a = 0 = b ) ,  when there is no attenuation or interference (c = 1) and in 
which case we may write 

{ d ~ / d ~ d w ) ,  = {8n2p,co(i - ~ ~ c o s e ) ~ - ~ s ( ~ - ~ , / ( i  -~ ,cOse) )  

w,/c) (cos 0,  sin 0 cos 9, sin 8 sin $), oo}/( 1 - M, COB e)} ] 2 (60) [s(i( i + (p/p,)  (1 - M cos e ) 2  sin e( 1 - M, COB e)/$(&) 
which shows that all sound is transmitted at  .the frequency of the source with the 
Doppler shift associated with its motion and for which functions such as (25) are 
evaluated for g = G ,  e.g. y ( G )  = (~~/c)$(e)/(l-M,cos@, where 

+(e) = {(co/c)2(i - M  cose)2- (cos2e+sin2ec0s2~p 

(Howe 1975). 
The general formula for the acoustic power (59) includes the case (60) of a plane 

interface obtained by Howe (1 975), who has also considered statistical effects (Howe 
1976). For turbulent diffraction the latter are embodied in the characteristic function 
(57) and auOocorrelation coefficient (55) and (56), which have been shown to be con- 
sistent respectively (figure 3) with the experiments of Schmidt & Tilmann (1970) and 
Ho & Kovasznay (1976a, b) .  Altogether this may be regarded as a preliminary 
verification of the ideas underlying the present theory, so that we may conclude by 
expressing the results in a form suitable for subsequent, more detailed, applications. 
The non-trivial integrations d R d w  in (59) imply that the field observed in the ambient 
medium is generally neither monochromatic nor omnidirectional, suggesting the 
definition of the spectral directivity I as the acoustic power per unit solid angle and 
unit frequency band: dW = I(B, 9, w)dQdW, 

where J(0,  9) and H ( w )  denote tihe total directivity and total spectrum respectively, 
which are obtained by integrating the spectral directivity over all frequencies or over 
the unit sphere @. However, the spectrum I(O0, 9,; o) is generally not the same in 
each radiation direction (O,, $,), and similarly, the directivity I(0,  9; 0,) is different 
a t  distinct frequencies o,, so that a detailed specification of the sound field requires 
the spectral directivity. 

Comparison with (59) shows that the spectral directivity involves three basic 
functions : 
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These may be interpreted as follows: (a )  the observation function 0(8,$)  depends 
on the properties of the ambient medium, on the motion of the source and on the 
direction of observation; ( b )  the amplitude function for the energy Y(g, w )  depends on 
the field emitted by the source (S for each wave component g), modified by propaga- 
tion in the jet ( 2 5 b )  and transmission to the ambient medium ( 2 6 a ) ,  and also involves 
the frequency of reception w ;  ( c )  the phase function @(g, w ,  G ;  z, 7) depends on all 
the preceding quantities as well as on the spatial separation and time delay ( 2 , ~ )  
and is associated with the difference between the horizontal wave vectors of emission 
and reception and a phase shift, the latter being equal to the difference between the 
frequencies of reception and emission, with one Doppler shift g . U  to account for 
source motion and another a V .  (g- G )  to account for the mean convection of the 
shear layer. The characteristic function (57 a )  determines the degree of attenuation 
(57 b )  produced by interfacial irregularities and distributed turbulence, and also the 
interference between wave components within a correlation scale [see (55) and ( 5 6 ) ] .  

The spectral directivity of sound transmitted through a single irregular and tur- 
bulent shear layer involves these four functions, with integrations over a11 propagating 
(incident and transmitted) wave components d2g (y, r real) and over the mean plane 
of the shear layer for all time d2zd7: 

The spectral directivity II for transmission through a double shear layer, which is 
obtained by an analysis similar to (58) - (62)  after substitution of ( 3 5 )  into ( 4 2 )  as a 
starting formula, or more simply, by appropriate use of the functions ( 5 7 a )  and ( 6 2 ) ,  
is given by 

J 

x exp[ i (@(G,o ,g+;z+ ,~+)+~(g+ ,o+ ,g ;z - ,~_ ) ] }  d2g_d2z-d7_dw+d2g+d2z+d7,. 

(63  b )  

Similarly, the energy radiated through any system of shear layers, whether single, 
double or multiple, and involving reflexions, transmissions or both, may be readily 
written down. For example, the energy associated with transmission through a double 
shear layer involving intermediate internal reflexions may be added to ( 6 3 b ) ,  the 
nth-order correction involving 11 + 1% integrals. For a system of plane interfaces 
devoid of turbulence C = 1 and all integrations may be performed trivially and reduce 
essentially to multiplication by the scattering factors in (4a, b ) ,  which describe the 
redistribution of energy, the spectrum being unchanged throughout the refraction 
process. For a turbulent and/or irregular shear layer C = C(Z,T) and refraction 
integrals of the form ( 6 3 a ,  b )  imply that not only is the energy redirected spatially, 
allowing radiation into regions inaccessible for scattering by a plane interface (because 
the conditions Rey, r apply only locally), but also the incident spectrum, even if 
monochromatic, will generally be broadened into a band of frequencies. Also, since 
C < 1, which means that some of the acoustic energy is absorbed, deflected or back- 
scattered by the corresponding components of the turbulence spectrum (4 .2 ) ,  it can 
generally be predicted that a system of turbulent and/or irregular shear layers will 
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transmit less sound than would the corresponding set of plane interfaces devoid of 
turbulence when placed between the same media. This property applies to the energy 
transmitted over all frequencies in each direction in which the plane system can 
radiate, i.e. the direceivity is reduced by the presence of interfacial irregularities or 
distributed turbulence. 

I record here the benefit I have derived from discussions with my supervisor, Dr 
M. S. Howe, on the subject of scattering of waves. I owe to Professor Sir James 
Lighthill much of the encouragement for the present study. The work was performed 
while the author was on leave from the Instituto Superior TBcnico, Lisbon, Portugal, 
and also also supported by a scholarship from the Portuguese Ministry of Education. 
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